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Abstract—In a one-step procedure, L-1-O-benzyl-2-O-methyl-chiro-inositol (1) was acetalized to the L-muco-inositol derivatives 2,
3 and D-2-O-benzyl-3-O-cyclohexylcarbamoyl-4-(N,N �-dicyclohexylureido)-4-deoxy-1-O-methyl-5,6-O-trichloroethylidene-chiro-
inositol (4). L-1-O-Benzyl-6-O-cyclohexylcarbamoyl-3-O-formyl-2-O-methyl-4,5-O-trichloroethylidene-muco-inositol (3) was
quantitatively deformylated to L-1-O-benzyl-6-O-cyclohexylcarbamoyl-2-O-methyl-4,5-O-trichloroethylidene-muco-inositol (2) by
boiling methanolic triethylamine. © 2001 Elsevier Science Ltd. All rights reserved.

The separation of inositol derivatives from natural
sources is limited to a few representatives, so that
various compounds of this type were prepared by
chemical methods.1–4 Some of the nine stereoisomeric
inositols are only available in limited amounts, e.g.
L-muco and D-chiro inositols. In 1994, a new epimeriza-
tion method was reported for carbohydrates which used
the reagent combination of chloral/DCC.5 First
attempts to apply this method to inositols containing
five or six unprotected OH-groups (L-quebrachitol or

myo-inositol) failed; however, the tetrahydroxy deriva-
tive (1S,2S,3S,4R,5R)-1-O-methylcyclohexane-1,2,3,4,
5-pentol could be epimerized.6

Surprising results were just found starting with L-1-O-
benzyl-2-O-methyl-chiro-inositol (1).7–10 Refluxing of 1
in 1,2-dichloroethane with chloral/DCC for about 8 h
yielded three products, the crystalline L-muco-inositol
derivatives 2 (25%) and 3 (16%) and D-chiro-inositol
derivative 4 (15%); Scheme 1. The latter is easily soluble

Scheme 1.
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Scheme 2.

in light petroleum and numerous other organic sol-
vents; however, it did not crystallize.11

Compound 3 is the 3-O-formyl derivative of L-muco-
inositol derivative 2. Boiling methanolic triethylamine
allows a selective removal of formyl groups. By this
procedure, compound 3 was quantitatively converted
into 2 within 15 min (Scheme 1). The formation of 2
and 3 from 1 is in conformity with the mechanism of
epimerizations described for cis–trans triol units of
pyranoses.5,6,12 That means, species A shown in Scheme
2 is the key intermediate; the configuration at the
middle carbon atom (C-5) of the cis–trans triol unit
(C-4/5/6) of 1 is inverted. As a consequence of imi-
docarbonate opening, the carbamoyl group must be
located in the 6-position of the muco-derivatives 2 and
3.

The formation of the inositol derivative 4 came as a
surprise. Related to 1 the configuration at two C-atoms
(C-4 and C-5) was inverted. We assume that compound
4 results from a reaction sequence via the key interme-
diate B which is formed from A (addition of 4-OH to
DCC after hemiacetal displacement to 3-OH). Interme-
diate B allows a Tandem-sequence as marked by arrows
in Scheme 2; the postulated C�N-bond formation is
supported by results of Vowinkel and Gleichenhagen.13

The configuration of 4 corresponds to a D-chiro-inositol
derivative (compare formulas of 4 in Scheme 1). There-
fore, the numbering of 4 was adapted corresponding to
the rules.14

The structures of the compounds 2–4 are supported by
NMR measurements; selected data of 2 and 4 see Ref.
15. The assignment of signals in the 1H and 13C NMR
spectra was performed by recording DEPT and two-
dimensional 1H, 1H and 13C, 1H correlation spectra.
Thus, the signals for C-1 and C-2 could be confirmed
by the correlation over three bonds to the proton
signals OBn and OMe, respectively. On this basis the
assignment of signals for the other ring atoms became
possible. All spectra show the characteristic signals of a
carbamoyl group and a trichloroethylidene group. The
latter is characterized by the singlet of the acetal proton
(2: �=5.39, 3: �=5.46, 4: �=5.45) and by the C signals
(�CCl398.9–99.7; �CH105.9–107.2) of the acetal moiety.
The formyl group of 3 is characterized by the 1H
doublet �=8.14, J=1.0 Hz and the 13C-signal �=
160.2. For compound 4, the signal for C-4 is signifi-
cantly shifted to higher field due to the N-substituent

compared to the other ring-C-atom signals. In the 1H
spectrum of 4 recorded at room temperature some
signals were displayed as broad signals which were
sharpened at higher temperature indicating a dynamic
process due to the flexibility of the molecule.15
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